Deformation quantization and quantum groupoids

نویسنده

  • PING XU
چکیده

It is shown that a quantum groupoid (or a QUE algebroid, i.e., deformation of the universal enveloping algebra of a Lie algebroid) naturally gives rise to a Lie bialgebroid as a classical limit. The converse question, i.e., the quantization problem, is raised, and it is proved for all regular triangular Lie bialgebroids. For a Poisson manifold P , the existence of a star-product is shown to be equivalent to the existence of a quantization of the corresponding Lie bialgebroid (TP, T ∗P ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation Quantization of Pseudo Symplectic(Poisson) Groupoids

We introduce a new kind of groupoid—a pseudo étale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantizatio...

متن کامل

Lie Groupoids and Lie algebroids in physics and noncommutative geometry

Groupoids generalize groups, spaces, group actions, and equivalence relations. This last aspect dominates in noncommutative geometry, where groupoids provide the basic tool to desingularize pathological quotient spaces. In physics, however, the main role of groupoids is to provide a unified description of internal and external symmetries. What is shared by noncommutative geometry and physics is...

متن کامل

Functorial Quantization and the Guillemin–sternberg Conjecture *

We propose that geometric quantization of symplectic manifolds is the arrow part of a functor, whose object part is deformation quantization of Poisson manifolds. The 'quantiza-tion commutes with reduction' conjecture of Guillemin and Sternberg then becomes a special case of the functoriality of quantization. In fact, our formulation yields almost unlimited generalizations of the Guillemin–Ster...

متن کامل

Deformation Quantization and the Baum–Connes Conjecture

Alternative titles of this paper would have been “Index theory without index” or “The Baum–Connes conjecture without Baum.” In 1989, Rieffel introduced an analytic version of deformation quantization based on the use of continuous fields ofC∗-algebras. We review how a wide variety of examples of such quantizations can be understood on the basis of a single lemma involving amenable groupoids. Th...

متن کامل

Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids

We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008